Среднее геометрическое чисел – формула и примеры. Как найти g среднее


Как посчитать среднее значение | Сделай все сам

В математике и статистике среднее арифметическое (либо легко среднее ) комплекта чисел — это сумма всех чисел в этом комплекте, поделённая на их число. Среднее арифметическое является особенно всеобщим и самым распространённым представлением средней величины.

Вам понадобится

  • Знания по математике.

Инструкция

1. Пускай дан комплект из четырех чисел. Нужно обнаружить среднее значение этого комплекта. Для этого вначале обнаружим сумму всех этих чисел. Возможен эти числа 1, 3, 8, 7. Их сумма равна S = 1 + 3 + 8 + 7 = 19. Комплект чисел должен состоять из чисел одного знака, в отвратном случае толк в вычислении среднего значения теряется.

2. Среднее значение комплекта чисел равно сумме чисел S, деленной на число этих чисел. То есть получается, что среднее значение равно: 19/4 = 4.75.

3. Для комплекта числе также дозволено обнаружить не только среднее арифметическое, но и среднее геометрическое. Средним геометрическим нескольких правильных вещественных чисел именуется такое число, которым дозволено заменить всякое из этих чисел так, дабы их произведение не изменилось. Среднее геометрическое G ищется по формуле: корень N-ой степени из произведения комплекта чисел, где N — число числе в комплекте. Разглядим тот же комплект чисел: 1, 3, 8, 7. Обнаружим их среднее геометрическое. Для этого посчитаем произведение: 1*3*8*7 = 168. Сейчас из числа 168 нужно извлечь корень 4-ой степени: G = (168)^1/4 = 3.61. Таким образом среднее геометрическое комплекта чисел равно 3.61.

Среднее геометрическое в совокупности применяется реже, чем арифметическое среднее, впрочем оно может быть пригодно при вычислении среднего значения показателей, изменяющихся с течением времени (заработная плата отдельного работника, динамика показателей успеваемости и т.п.).

Вам понадобится

  • Инженерный калькулятор

Инструкция

1. Для того дабы обнаружить среднее геометрическое ряда чисел, для начала надобно перемножить все эти числа. Скажем, вам дан комплект из пяти показателей: 12, 3, 6, 9 и 4. Перемножим все эти числа: 12х3х6х9х4=7776.

2. Сейчас из полученного числа надобно извлечь корень степени, равной числу элементов ряда. В нашем случае из числа 7776 необходимо будет извлечь корень пятой степени при помощи инженерного калькулятора. Полученное позже этой операции число – в данном случае число 6 – будет являться средним геометрическим для начальной группы чисел.

3. Если у вас под рукой нет инженерного калькулятора, то вычислить среднее геометрическое ряда чисел дозволено с поддержкой функции СРГЕОМ в программе Excel либо при помощи одного из онлайн-калькуляторов, намеренно предуготовленных для вычисления средних геометрических значений.

Обратите внимание! Если понадобится обнаружить среднее геометрическое каждого для 2-х чисел, то инженерный калькулятор вам не потребуется: извлечь корень 2-й степени (квадратный корень) из всякого числа дозволено при помощи самого обыкновенного калькулятора.

Полезный совет В различие от среднего арифметического, на геометрическое среднее не так мощно влияют огромные отклонения и колебания между отдельными значениями в исследуемом комплекте показателей.

Среднее значение — это одна из колляций комплекта чисел. Представляет собой число, которое не может выходить за пределы диапазона, определяемого наибольшим и наименьшим значениями в этом комплекте чисел. Среднее арифметическое значение — особенно зачастую применяемая разновидность средних.

Инструкция

1. Сложите все числа множества и поделите их на число слагаемых, дабы получить среднее арифметическое значение. В зависимости от определенных условий вычисления изредка бывает проще разделять всякое из чисел на число значений множества и суммировать итог.

2. Используйте, скажем, входящий в состава ОС Windows калькулятор, если вычислить среднее арифметическое значение в уме не представляется допустимым. Открыть его дозволено с поддержкой диалога запуска программ. Для этого нажмите «жгучие клавиши» WIN + R либо щелкните кнопку «Пуск» и выберите в основном меню команду «Исполнить». После этого напечатайте в поле ввода calc и нажмите на клавиатуре Enter либо щелкните кнопку «OK». Это же дозволено сделать через основное меню — раскройте его, перейдите в раздел «Все программы» и в сегменты «Типовые» и выберите строку «Калькулятор».

3. Введите ступенчато все числа множества, нажимая на клавиатуре позже всего из них (помимо последнего) клавишу «Плюс» либо щелкая соответствующую кнопку в интерфейсе калькулятора. Вводить числа тоже дозволено как с клавиатуры, так и щелкая соответствующие кнопки интерфейса.

4. Нажмите клавишу с косой чертой (слэш) либо щелкните данный значок в интерфейсе калькулятора позже ввода последнего значения множества и напечатайте число чисел в последовательности. После этого нажмите знак равенства, и калькулятор рассчитает и покажет среднее арифметическое значение.

5. Дозволено для этой же цели применять табличный редактор Microsoft Excel. В этом случае запустите редактор и введите в соседние ячейки все значения последовательности чисел. Если позже ввода всего числа вы будете нажимать Enter либо клавишу со стрелкой вниз либо вправо, то редактор сам будет перемещать фокус ввода в соседнюю ячейку.

6. Выделите все введенные значения и в левом нижнем углу окна редактора (в строке состояния) увидите среднеарифметическое значение для выделенных ячеек.

7. Щелкните следующую за последним введенным числом ячейку, если вам не довольно только увидеть среднее арифметическое значение. Раскройте выпадающий список с изображением греческой буквы сигма (Σ) в группе команд «Редактирование» на вкладке «Основная». Выберите в нем строку «Среднее » и редактор вставит необходимую формулу для вычисления среднеарифметического значения в выделенную ячейку. Нажмите клавишу Enter, и значение будет рассчитано.

Среднее арифметическое — одна из мер центральной склонности, обширно применяемая в математике и статистических расчетах. Обнаружить среднее арифметическое число для нескольких значений дюже легко, но у всякой задачи есть свои нюансы, знать которые для выполнения правильных расчетов примитивно нужно.

Что такое среднее арифметическое число

Среднее арифметическое число определяет усредненное значение для каждого начального массива чисел. Другими словами, из некоторого множества чисел выбирается всеобщее для всех элементов значение, математическое сопоставление которого со всеми элементами носит приближенно равный нрав. Среднее арифметическое число применяется, предпочтительно, при составлении финансовых и статистических отчетов либо для расчетов количественных итогов проведенных сходственных навыков.

Как обнаружить среднее арифметическое число

Поиск среднего арифметического числа для массива чисел следует начинать с определения алгебраической суммы этих значений. К примеру, если в массиве присутствуют числа 23, 43, 10, 74 и 34, то их алгебраическая сумма будет равна 184. При записи среднее арифметическое обозначается буквой ? (мю) либо x (икс с чертой). Дальше алгебраическую сумму следует поделить на число чисел в массиве. В рассматриваемом примере чисел было пять, следственно среднее арифметическое будет равно 184/5 и составит 36,8.

Особенности работы с негативными числами

Если в массиве присутствуют негативные числа, то нахождение среднего арифметического значения происходит по аналогичному алгорифму. Разница имеется только при рассчетах в среде программирования, либо же если в задаче есть добавочные данные. В этих случаях нахождение среднего арифметического чисел с различными знаками сводится к трем действиям:1. Нахождение всеобщего среднего арифметического числа стандартным способом;2. Нахождение среднего арифметического негативным чисел.3. Вычисление среднего арифметического позитивных чисел.Результаты всякого из действий записываются через запятую.

Натуральные и десятичные дроби

Если массив чисел представлен десятичными дробями, решение происходит по способу вычисления среднего арифметического целых чисел, но сокращение итога производится по требованиям задачи к точности результата.При работе с естественными дробями их следует привести к всеобщему знаменателю, тот, что умножается на число чисел в массиве. В числителе результата будет сумма приведенных числителей начальных дробных элементов.

Среднее геометрическое чисел зависит не только от безусловной величины самих чисел, но и от их числа. Невозможно путать среднее геометрическое и среднее арифметическое чисел, от того что они находятся по различным методологиям. При этом среднее геометрическое неизменно поменьше либо равно среднему арифметическому.

Вам понадобится

  • Инженерный калькулятор.

Инструкция

1. Рассматривайте, что в всеобщем случае среднее геометрическое чисел находится путем перемножения этих чисел и извлечения из них корня степени, которая соответствует числу чисел. Скажем, если надобно обнаружить среднее геометрическое пяти чисел, то из произведения необходимо будет извлекать корень пятой степени.

2. Для нахождения среднего геометрического 2-х чисел используйте основное правило. Обнаружьте их произведение, позже чего извлеките из него квадратный корень, от того что числа два, что соответствует степени корня. Скажем, для того дабы обнаружить среднее геометрическое чисел 16 и 4, обнаружьте их произведение 16•4=64. Из получившегося числа извлеките квадратный корень ?64=8. Это и будет желанная величина. Обратите внимание на то, что среднее арифметическое этих 2-х чисел огромнее и равно 10. Если корень не извлекается нацело, произведите округление итога до надобного порядка.

3. Дабы обнаружить среднее геометрическое больше чем 2-х чисел, тоже используйте основное правило. Для этого обнаружьте произведение всех чисел, для которых надобно обнаружить среднее геометрическое. Из полученного произведения извлеките корень степени, равной числу чисел. Скажем, дабы обнаружить среднее геометрическое чисел 2, 4 и 64, обнаружьте их произведение. 2•4•64=512. От того что необходимо обнаружить итог среднего геометрического 3 чисел, что из произведения извлеките корень третей степени. Сделать это устно затруднительно, следственно воспользуйтесь инженерным калькулятором. Для этого в нем есть кнопка «x^y». Наберите число 512, нажмите кнопку «x^y», позже чего наберите число 3 и нажмите кнопку «1/х», дабы обнаружить значение 1/3, нажмите кнопку «=». Получим итог возведения 512 в степень 1/3, что соответствует корню третьей степени. Получите 512^1/3=8. Это и есть среднее геометрическое чисел 2,4 и 64.

4. С поддержкой инженерного калькулятора дозволено обнаружить среднее геометрическое иным методом. Обнаружьте на клавиатуре кнопку log. Позже этого возьмите логарифм для всего из чисел, обнаружьте их сумму и поделите ее на число чисел. Из полученного числа возьмите антилогарифм. Это и будет среднее геометрическое чисел. Скажем, для того дабы обнаружить среднее геометрическое тех же чисел 2, 4 и 64, сделайте на калькуляторе комплект операций. Наберите число 2, позже чего нажмите кнопку log, нажмите кнопку «+», наберите число 4 и вновь нажмите log и «+», наберите 64, нажмите log и «=». Итогом будет число, равное сумме десятичных логарифмов чисел 2, 4 и 64. Полученное число поделите на 3, от того что это число чисел, по которым ищется среднее геометрическое. Из итога возьмите антилогарифм, переключив кнопку регистра, и используйте ту же клавишу log. В итоге получится число 8, это и есть желанное среднее геометрическое.

Обратите внимание! Среднее значение не может быть огромнее самого большого числа в комплекте и поменьше самого маленького.

Полезный совет В математической статистике среднее значение величины именуется математическим ожиданием.

jprosto.ru

Как найти среднее арифметическое число в Excel

Для того чтобы найти среднее значение в Excel (при том неважно числовое, текстовое, процентное или другое значение) существует много функций. И каждая из них обладает своими особенностями и преимуществами. Ведь в данной задаче могут быть поставлены определенные условия.

Например, средние значения ряда чисел в Excel считают с помощью статистических функций. Можно также вручную ввести собственную формулу. Рассмотрим различные варианты.

Как найти среднее арифметическое чисел?

Чтобы найти среднее арифметическое, необходимо сложить все числа в наборе и разделить сумму на количество. Например, оценки школьника по информатике: 3, 4, 3, 5, 5. Что выходит за четверть: 4. Мы нашли среднее арифметическое по формуле: =(3+4+3+5+5)/5.

Как это быстро сделать с помощью функций Excel? Возьмем для примера ряд случайных чисел в строке:

  1. Ставим курсор в ячейку А2 (под набором чисел). В главном меню – инструмент «Редактирование» - кнопка «Сумма». Выбираем опцию «Среднее». После нажатия в активной ячейке появляется формула. Выделяем диапазон: A1:h2 и нажимаем ВВОД.
  2. В основе второго метода тот же принцип нахождения среднего арифметического. Но функцию СРЗНАЧ мы вызовем по-другому. С помощью мастера функций (кнопка fx или комбинация клавиш SHIFT+F3).
  3. Третий способ вызова функции СРЗНАЧ из панели: «Формула»-«Формула»-«Другие функции»-«Статические»-«СРЗНАЧ».

Или: сделаем активной ячейку и просто вручную впишем формулу: =СРЗНАЧ(A1:A8).

Теперь посмотрим, что еще умеет функция СРЗНАЧ.

Найдем среднее арифметическое двух первых и трех последних чисел. Формула: =СРЗНАЧ(A1:B1;F1:h2). Результат:



Среднее значение по условию

Условием для нахождения среднего арифметического может быть числовой критерий или текстовый. Будем использовать функцию: =СРЗНАЧЕСЛИ().

Найти среднее арифметическое чисел, которые больше или равны 10.

Функция: =СРЗНАЧЕСЛИ(A1:A8;">=10")

Результат использования функции СРЗНАЧЕСЛИ по условию ">=10":

Третий аргумент – «Диапазон усреднения» - опущен. Во-первых, он не обязателен. Во-вторых, анализируемый программой диапазон содержит ТОЛЬКО числовые значения. В ячейках, указанных в первом аргументе, и будет производиться поиск по прописанному во втором аргументе условию.

Внимание! Критерий поиска можно указать в ячейке. А в формуле сделать на нее ссылку.

Найдем среднее значение чисел по текстовому критерию. Например, средние продажи товара «столы».

Функция будет выглядеть так: =СРЗНАЧЕСЛИ($A$2:$A$12;A7;$B$2:$B$12). Диапазон – столбец с наименованиями товаров. Критерий поиска – ссылка на ячейку со словом «столы» (можно вместо ссылки A7 вставить само слово "столы"). Диапазон усреднения – те ячейки, из которых будут браться данные для расчета среднего значения.

В результате вычисления функции получаем следующее значение:

Внимание! Для текстового критерия (условия) диапазон усреднения указывать обязательно.

Как посчитать средневзвешенную цену в Excel?

Как посчитать средний процент в Excel? Для этой цели подойдут функции СУММПРОИЗВ и СУММ. Таблица для примера:

Как мы узнали средневзвешенную цену?

Формула: =СУММПРОИЗВ(C2:C12;B2:B12)/СУММ(C2:C12).

С помощью формулы СУММПРОИЗВ мы узнаем общую выручку после реализации всего количества товара. А функция СУММ - сумирует количесвто товара. Поделив общую выручку от реализации товара на общее количество единиц товара, мы нашли средневзвешенную цену. Этот показатель учитывает «вес» каждой цены. Ее долю в общей массе значений.

Среднее квадратическое отклонение: формула в Excel

Различают среднеквадратическое отклонение по генеральной совокупности и по выборке. В первом случае это корень из генеральной дисперсии. Во втором – из выборочной дисперсии.

Для расчета этого статистического показателя составляется формула дисперсии. Из нее извлекается корень. Но в Excel существует готовая функция для нахождения среднеквадратического отклонения.

Среднеквадратическое отклонение имеет привязку к масштабу исходных данных. Для образного представления о вариации анализируемого диапазона этого недостаточно. Чтобы получить относительный уровень разброса данных, рассчитывается коэффициент вариации:

среднеквадратическое отклонение / среднее арифметическое значение

Формула в Excel выглядит следующим образом:

СТАНДОТКЛОНП (диапазон значений) / СРЗНАЧ (диапазон значений).

Коэффициент вариации считается в процентах. Поэтому в ячейке устанавливаем процентный формат.

exceltable.com

Как вычислять среднее значение ряда чисел

Примечание:  Мы стараемся как можно оперативнее обеспечивать вас актуальными справочными материалами на вашем языке. Эта страница переведена автоматически, поэтому ее текст может содержать неточности и грамматические ошибки. Для нас важно, чтобы эта статья была вам полезна. Просим вас уделить пару секунд и сообщить, помогла ли она вам, с помощью кнопок внизу страницы. Для удобства также приводим ссылку на оригинал (на английском языке) .

Предположим, что нужно найти среднее число дней для выполнения задач, различными сотрудниками. Или вы хотите вычисление интервала времени 10 лет Средняя температура в определенный день. Вычисление среднего значения ряда чисел несколькими способами.

Среднее функция меры центральной тенденции, в которой находится центр ряда чисел в статистическое распределение. Три большинство общих критериями центральной тенденции выступают.

  • Среднее    Среднее арифметическое и вычисляется путем добавления ряда чисел и затем деления количества этих чисел. Например среднее значение 2, 3, 3, 5, 7 и 10 имеет 30, разделенных на 6, 5;

  • Медиана     Средний номер ряда чисел. Половина чисел имеют значения, которые больше, чем Медиана, а половина чисел имеют значения, которые меньше, чем Медиана. Например медиана 2, 3, 3, 5, 7 и 10 — 4.

  • Режим    Наиболее часто встречающееся число в группе чисел. Например режим 2, 3, 3, 5, 7 и 10 — 3.

Эти три меры центральной тенденции симметричную распределение ряда чисел, являются одни и те же. В асимметричное распределение ряда чисел они могут быть разными.

Выполните следующие действия.

  1. Щелкните ячейку ниже или справа, для которого нужно найти среднее значение чисел.

  2. На вкладке " Главная " в группе " Редактирование " щелкните стрелку рядом с кнопкойАвтосумма Изображение кнопки , выберите пункт Среднее и нажмите клавишу ВВОД.

Для выполнения этой задачи используется функция СРЗНАЧ . Скопируйте в приведенной ниже таблице на пустой лист.

Формула

Описание (результат)

=СРЗНАЧ(A2:A7)

Вычисление среднего значения всех чисел списка (9,5)

=СРЗНАЧ(A2:A4;A7)

Вычисление среднего значения трех первых и последнего чисел списка (7,5)

=СРЗНАЧ(A2:A7;"<>0")

Вычисление среднего значения всех чисел списка, кроме нулевых, таких как в ячейке A6 (11,4)

Для выполнения этой задачи используются функции СУММПРОИЗВ и сумм . Пример vThis вычисляет среднюю цену единицы измерения, оплаченная через три покупки, где находится каждый покупки для различное количество единиц измерения по различным ценам за единицу.

Скопируйте в приведенной ниже таблице на пустой лист.

A

B

Цена единицы товара

Количество единиц товара

600

500

25

750

35

200

Формула

Описание (результат)

=СУММПРОИЗВ(A2:A4;B2:B4)/СУММ(B2:B4)

Деление общей стоимости всех трех покупок на общее количество приобретенных единиц товара (24,66)

Для выполнения этой задачи используются функции СРЗНАЧ и если . Скопируйте приведенную ниже таблицу и имейте в виду, что в этом примере чтобы проще было понять, скопируйте его на пустой лист.

Формула

Описание (результат)

=СРЗНАЧЕСЛИ(A2:A7;"<>0")

Вычисление среднего значения всех чисел списка, кроме нулевых, таких как в ячейке A6 (11,4)

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community, попросить помощи в сообществе Answers community, а также предложить новую функцию или улучшение на веб-сайте Excel User Voice.

См. также

СРЗНАЧ

СРЗНАЧЕСЛИ

СУММ

СУММПРОИЗВ

support.office.com

Среднее арифметическое

Определение. Среднее арифметическое нескольких величин — это отношение суммы величин к их количеству.

Примером среднего арифметического служат такие показатели, как урожайность, производительность, посещаемость, скорость движения на определенном участке. Вычисление среднего арифметического и его составляющих производится по следующему простом правилу.

Правило. Чтобы вычислить среднее арифметическое нескольких чисел, нужно взять сумму этих чисел и разделить все на количество слагаемых. Частное и будет средним арифметическим этих чисел.

Пример 1. У Васи было 2 яблока, у Кати — 10 яблок, а у Саши — 6. Среднее количество яблок:

Пример 2. Средняя посещаемость зала в столовой за неделю высчитывается из посещаемости в течение 7 дней: 145 человек в 1-й день; 152 человека во 2-й день; 158 человек в 3-й лень; 162 человека в 4-й день; 164 человека в 5-й день; 161 человек в 6-й день и 157 человек в 7-й день.

Найдем среднее арифметическое (посещаемость) занеделю:

Xсреднее = (145 + 152 + 158 + 162 + 164 + 161 + 157) : 7 = 157.

Можно определить среднюю посещаемость и как 1099 : 7 = 157 человек (1099 человек за 7 дней). Т. с. можно фиксировать общее количество посетителей за неделю без учета посещаемости по дням. Но тогда мы не будем знать, что наибольшее количество посетителей в день — 164 человека, а наименьшее — 145 человек, что в этом примере важно (кухня должна ориентироваться на максимальное посещение, от количества посетителей зависит выручка столовой н т. д.).

Во втором примере мы вели статистический учет, следовательно, среднее арифметическое — показатель и в статистике. Но вычисление среднего арифметического имеет смысл только в определенных пределах (небольших промежутках). Нам ничего не даст, например, среднее-мировое количество жителей в одной стране. Стран в мире более 200, а число жителей Индии и Китая совершенно несоизмеримо с количеством жителей Нидерландов или Люксембурга. Полученная средняя численность проживающих в одной стране не будет объективной характеристикой каждой из стран (из-за большого расхождения в числах).

shkolo.ru

Среднее геометрическое чисел – формула и примеры

Средние величины в статистике играют важную роль, т.к. они позволяют получить обобщающую характеристику анализируемого явления. Самая распространенная средняя это, конечно, среднее арифметическое. Она имеет место тогда, когда агрегирующий показатель образуется с помощью суммы элементов. Например, масса нескольких яблок, суммарная выручка за каждый день продаж и т.д. Но так бывает не всегда. Иногда агрегатный показатель образуется не в результате суммирования, а в результате других математических операций.

Рассмотрим следующий пример. Месячная инфляция – это изменение уровня цен одного месяца по сравнению с предыдущим. Если известны показатели инфляции за каждый месяц, то как получить годовое значение? С точки зрения статистики – это цепной индекс, поэтому правильный ответ: с помощью перемножения месячных показателей инфляции. То есть общий показатель инфляции – это не сумма, а произведение. А как теперь узнать среднюю инфляцию за месяц, если имеется годовое значение? Нет, не разделить на 12, а извлечь корень 12-й степени (степень зависит от количества множителей). В общем случае среднее геометрическое рассчитывается по формуле:

То есть это корень из произведения исходных данных, где степень определяется количеством множителей. Для примера, среднее геометрическое из двух чисел – это квадратный корень из их произведения

из трех чисел – кубический корень из произведения

и т.д.

Если каждое исходное число заменить на их среднее геометрическое, то произведение даст тот же результат.

Чтобы лучше разобраться, что такое средняя геометрическая и чем она отличается от арифметической, рассмотрим следующий рисунок. Имеется прямоугольный треугольник, вписанный в круг.

Из прямого угла опущена медиана a (на середину гипотенузы). Также из прямого угла опущена высота b, которая в точке P делит гипотенузу на две части m и n. Т.к. гипотенуза – это диаметр описанного круга, а медиана – радиус, то очевидно, что длина медианы a – это среднее арифметическое из m и n.

Рассчитаем, чему равна высота b. В силу подобия треугольников АВP и BCP справедливо равенство

Откуда

То есть высота прямоугольного треугольника – это среднее геометрическое из отрезков, на которые она разбивает гипотенузу. Такое наглядное отличие.

В MS Excel среднюю геометрическую можно найти с помощью функции СРГЕОМ.

Все очень просто: вызвали функцию, указали диапазон и готово.

На практике этот показатель используют не так часто, как среднее арифметическое, но все же встречается. Например, есть такой индекс развития человеческого потенциала, с помощью которого сравнивают уровень жизни в разных странах. Он рассчитывается, как среднее геометрическое из нескольких индексов.

Бывают и другие средние величины. О них в другой раз.

statanaliz.info

Как найти среднее, минимальное и максимальное значение в Excel

В Microsoft Office Excel можно работать с цифрами и узнавать любое числовое значение. Этот табличный процессор справится практически со всеми расчётами. Он идеально подходит для бухгалтерского учёта. Для вычислений существуют специальные инструменты — формулы. Их можно применять к диапазону или к отдельным ячейкам. Чтобы узнать минимальную или максимальную цифру в группе клеток, необязательно искать их самостоятельно. Лучше воспользоваться предназначенными для этого опциями. Также полезно будет разобраться, как посчитать среднее значение в Excel.

Это особенно актуально в таблицах с большим объёмом данных. Если в столбце, например, указаны цены на продукцию торгового центра. И вам надо узнать, какой товар самый дешёвый. Если искать его «вручную», уйдёт очень много времени. Но в Экселе это можно сделать буквально за несколько кликов. Утилита также высчитывает среднее арифметическое. Ведь это две простые операции: сложение и деление.

Среднее, минимальное и максимальное значение в Excel

В этой статье мы расскажем, как вычислить различные значения в Эксель

Максимальное и минимальное

Вот как найти максимальное значение в Excel:

  1. Поставьте курсор-ячейку в любое место.
  2. Перейдите в меню «Формулы».
  3. Нажмите «Вставить функцию».
  4. В списке выберите «МАКС». Или напишите это слово в поле «Поиск» и нажмите «Найти».
  5. В окне «Аргументы» введите адреса диапазона, максимальное значение которого вам нужно узнать. В Excel имена клеток состоят из буквы и цифры («B1», «F15», «W34»). А название диапазона — это первая и последняя ячейки, которые в него входят.
  6. Вместо адреса можно написать несколько чисел. Тогда система покажет самое большее из них.
  7. Нажмите «OK». В клетке, в которой стоял курсор, появится результат.
Excel вставить функцию

Следующий шаг — укажите диапазон значений

Теперь будет легче разобраться, как найти минимальное значение в Excel. Алгоритм действий полностью идентичен. Просто вместо «МАКС» выберите «МИН».

Среднее

Среднее арифметическое вычисляется так: сложить все цифры из множества и поделить на их количество. В Экселе можно посчитать суммы, узнать, сколько ячеек в строке и так далее. Но это слишком сложно и долго. Придётся использовать много разных функций. Держать в голове информацию. Или даже что-то записывать на листочек. Но можно упростить алгоритм.

Вот как найти среднее значение в Excel:

  1. Поставьте ячейку курсор в любое свободное место таблицы.
  2. Перейдите на вкладку «Формулы».
  3. Нажмите на «Вставить функцию».
  4. Выберите «СРЗНАЧ».
  5. Если этого пункта нет в списке, откройте его с помощью опции «Найти».
  6. В области «Число1» введите адрес диапазона. Или напишите несколько цифр в разных полях «Число2», «Число3».
  7. Нажмите «OK». В ячейке появится нужное значение.
Excel СРЗНАЧ аргументы функции

Нажмите ОК для подсчета

Так можно проводить расчёты не только с позициями в таблице, но и с произвольными множествами. Excel, по сути, играет роль продвинутого калькулятора.

Другие способы

Максимальное, минимальное и среднее можно узнать и другими способами.

  1. Найдите панель функций с обозначением «Fx». Она над основной рабочей областью таблицы.
  2. Поставьте курсор в любую ячейку.
  3. Введите в поле «Fx» аргумент. Он начинается со знака равенства. Потом идёт формула и адрес диапазона/клетки.
  4. Должно получиться что-то вроде «=МАКС(B8:B11)» (максимальное), «=МИН(F7:V11)» (минимальное), «=СРЗНАЧ(D14:W15)» (среднее).
  5. Кликните на «галочку» рядом с полем функций. Или просто нажмите Enter. В выделенной ячейке появится нужное значение.
  6. Формулу можно скопировать непосредственно в саму клетку. Эффект будет тот же.
Excel минимальное значение

Впишите диапазон и нажмите Enter

Найти и вычислить поможет Excel-инструмент «Автофункции».

  1. Поставьте курсор в ячейку.
  2. Перейдите в раздел «Формулы».
  3. Найдите кнопку, название которой начинается на «Авто». Это зависит от выбранной в Excel опции по умолчанию («Автосумма», «Авточисло», «Автосмещ», «Автоиндекс»).
  4. Нажмите на чёрную стрелочку под ней.
  5. Выберите «МИН» (минимальное значение), «МАКС» (максимальное) или «СРЗНАЧ» (среднее).
  6. В отмеченной клетке появится формула. Кликните на любую другую ячейку — она будет добавлена в функцию. «Растяните» рамку вокруг неё, чтобы охватить диапазон. Или щёлкайте по сетке с зажатой клавишей Ctrl, чтобы выделять по одному элементу.
  7. Когда закончите, нажмите Enter. Результат отобразится в клетке.

В Excel вычислить среднее значение достаточно легко. Не нужно складывать, а потом делить сумму. Для этого существует отдельная функция. Также можно найти минимум и максимум в множестве. Это намного легче, чем считать вручную или выискивать цифры в огромной таблице. Поэтому Эксель популярен во многих сферах деятельности, где требуется точность: бизнес, аудит, кадровое делопроизводство, финансы, торговля, математика, физика, астрономия, экономика, наука.

nastroyvse.ru

Как найти среднеквадратическое отклонение

Автор Сергей

Воскресенье, Ноябрь 6, 2016

В данной статье я расскажу о том, как найти среднеквадратическое отклонение. Этот материал крайне важен для полноценного понимания математики, поэтому репетитор по математике должен посвятить его изучению отдельный урок или даже несколько. В этой статье вы найдёте ссылку на подробный и понятный видеоурок, в котором рассказано о том, что такое среднеквадратическое отклонение и как его найти.

Среднеквадратическое отклонение дает возможность оценить разброс значений, полученных в результате измерения какого-то параметра. Обозначается символом \sigma (греческая буква «сигма»).

Формула для расчета \sigma довольно проста. Чтобы найти среднеквадратическое отклонение, нужно взять квадратный корень из дисперсии. Так что теперь вы должны спросить: “А что же такое дисперсия?”

Что такое дисперсия

Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.

Чтобы найти дисперсию последовательно проведите следующие вычисления:

  • Определите среднее (простое среднее арифметическое ряда значений).
  • Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности).
  • Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).

Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.

Порода собаки Рост в миллиметрах
Ротвейлер 600
Бульдог 470
Такса 170
Пудель 430
Мопс 300

Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.

Сперва найдём среднее значение. Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:

Среднее  =\frac{600+470+170+430+300}{5} = 394 мм.

Итак, среднее (среднеарифметическое) составляет 394 мм.

Теперь нужно определить отклонение роста каждой из собак от среднего:

    \[ \begin{array}{l} 1: 600-394 = 206 \\ 2: 470-394 = 76 \\ 3: 170-394 = -224\\ 4: 430-394 = 36\\ 5: 300-394 = -94 \end{array} \]

Наконец, чтобы вычислить дисперсию, каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:

Дисперсия = \frac{206^2+76^2+(-224)^2+36^2+(-94)^2}{5} = 21704 мм2.

Таким образом, дисперсия составляет 21704 мм2.

Как найти среднеквадратическое отклонение

Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:

\sigma = \sqrt{21704} \approx 147 мм (округлено до ближайшего целого значения в мм).

Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).

Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.

То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.

Что такое стандартное отклонение

Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единствен

yourtutor.info